亚洲综合精品一区二区三区_香蕉视频APP下载_丰满圆润大胸在线_成人影院YY111111在线

網站首頁 公司簡介 新聞動態 誠聘英才 聯系我們  
產品系列
科研級光譜測試系統
科學級成像相機
表面分析測試系統
激光器和光源
FLIM 系統
時間控制系統
耗材材料
光束整形元件
特種鏡頭
光學平臺
光機配件
光鑷微操控系統
光學元件檢測與裝調設備
系統方案設計與服務
光學醫學檢測
教學演示儀器
欄目列表
新聞動態
公司產品
服務與支持
當前位置: 首頁 > 公司產品 > FLIM 系統 >

LIFA Widefield

作者: Kevin Peng    發布于: 2013-06-21 00:31    點擊:

Fast frequency-domain FLIM microscope attachment

LIFA Widefield
    

The Lambert Instruments Fluorescence lifetime Attachment (LIFA) is a fast frequency-domain fluorescence lifetime imaging microscopy system compatible with Leica, Nikon, Olympus and Zeiss widefield fluorescence microscopes.

You can see the LIFA at .



The LIFA - Lambert Instruments Fluorescence lifetime Attachment - is a camera-based fast fluorescence lifetime imaging microscopy system that operates in the frequency domain and is compatible with Leica, Nikon, Olympus, TILL and Zeiss fluorescence microscopes.

The well-established homodyne detection technology together with the massive parallelism of the state-of-the-art intensified camera allows near instantaneous acquisition of full field lifetime images. The widefield system includes a Multi-LED modulated light source. Its high-power LEDs can be modulated in a broad frequency range, resulting in good lifetime sensitivity and high accuracy. The components of the LIFA are the TRiCAM modulated intensified CCD camera, a dual signal generator, and the LI-FLIM software package.

The LIFA is easy to install - within the hour - and very easy to operate. The LIFA is in addition well suited for high-content screening applications. The LIFA system has been judged "easy and highly quantitative" for a.o. FLIM-FRET studies.


Hardware features

  • Fast fluorescence lifetime imaging microscopy, up to two lifetime images per second
  • Non-phototoxic illumination offered by the Multi-LED (NEW)
  • Lifetime sensitivity 0-300 ns
  • Lifetime accuracy 30 ps r.m.s.
  • High quantum efficiency with the Gen III GaAs image intensifier (Optional)

Software features

  • FRET efficiency mapping
  • Time-lapses
  • Multi-frequency acquisition and analysis for separation of multiple lifetimes
  • Polar (Phasor) plot inspection and separation of multiple lifetimes
  • Easy integration into specialized image analysis pipelines through ActiveX
  • Export to Metamorph, ImageJ, Matlab
  • Images can be exported as BMP, TIFF
  • Statistics and histograms can be exported to MS Excel


Lambert Instruments provides the following LIFA models, which cover a wide range in spectral sensitivity and in lifetime sensitivity. Each model is based on a specific high-resolution Gen II or Gen III image intensifier, see also our .

Model

Photocathode

Modulation frequency

Lifetime sensitivity

LIFA Gen II S20 S20 1-120 MHz 0-300 ns
LIFA Gen II S25 S25 1-120 MHz 0-300 ns
LIFA Gen III GaAs GaAs 1-120 MHz 0-300 ns
LIFA X Gen II S20 S20 0-100 kHz, 1-120 MHz 0 ns - 1 ms
LIFA X Gen II S25 S25 0-100 kHz, 1-120 MHz 0 ns - 1 ms
LIFA X Gen III GaAs GaAs 0-100 kHz, 1-120 MHz 0 ns - 1 ms
LIFA P Gen II S20 S20 0-100 kHz 100 ns - 1 ms
LIFA P Gen II S25 S25 0-100 kHz 100 ns - 1 ms
LIFA P Gen III GaAs GaAs 0-100 kHz 100 ns - 1 ms
LIFA P Gen III GaAsP GaAsP 0-100 kHz 100 ns - 1 ms

 

Photocathode spectral sensitivity

Spectral sensivity as a function of wavelength for each of the photocathodes is shown below.

Spectral sensitivity of photocathodes

For more information, please refer to our technologies page on .

Options

 

Support for automated microscopes

Nikon Ti Eclipse.

Support for XYZ stages

  • (Motorized stage system for automated FLIM acquisition at a series of user-defined XYZ positions.)
  • (Nanopositioning system, a z-stepper.)

The LIFA has the following applications:

  • Molecular interactions
  • Protein conformation
  • Biosensors
  • Oxygen concentration imaging in cells and tissue
  • NADH/FAD fluorescence dynamics
  • Viscosity imaging
  • Membrane dynamics
  • Membrane trafficking
  • LED inspection
  • Crude oil characterisation





Selected LIFA Publications

Abankwa, D., et al., , J Biol Chem. (2014)

Goedhart J. et al., , Nature Communications (2012), 3:751

José Pena, E., et al.,, Virus Research (2012)

Byrne, R.D., et al., , PLoS One. (2012), 7(7): e40669

Zhang, H., et al., , Molecular Psychiatry advance online publication 26 June 2012

Pereira, A.M., et al., , PLoS One. (2011), 6(12): e26182

Praus, A., et al., , Journal of Molecular Structure 993 (2011) 316-318

Zhao Q, Young IT, de Jong JG., , J Biomed Opt. 2011 Aug;16(8):086007

Klarenbeek, JB, , PLoS One. 2011 Apr 29;6(4):e19170

Dragavon J, et al., , Proc. SPIE 7910, 791019 (2011); doi:10.1117/12.875430

Svensson FR, et al., , J. Phys. Chem. Lett. (2011) 2:397–401

Huntosova V., et al., , International Journal of Pharmaceutics 389 (2010) 32-40

Vos MJ, et al., , Human Molecular Genetics (2010) 19(23):4677-93 Kozer, N., et al., Creation and biophysical characterization of a high-affinity, monomeric EGF receptor ectodomain using fluorescent proteins, Biochemistry (2010) 49(35):7459-66

Hageman, J., et al., . Molecular Cell (2010) 37(3):355-69

Abankwa D, et al., . Proc Natl Acad Sci (2010) 107(3):1130-5

Bastiani M, et al., . J Cell Biol (2009) 185(7):1259-73

Aymeric Leray A., et al., , Microscopy Research and Technique (2009) 72(5) 371-379

Hafrén J., et al., . J Wood Sci (2009) 55(3) 236-239

Schlachter S., et al., mhFLIM: . Optics Express (2009) 17(3):1557-70

Valdembri D, et al., . PLoS Biol. (2009) 27:7(1):e25

Gadella TW Jr., , 33. Imprint: Elsevier, ISBN-13: 978-0-08-054958-3. (2008) 560 pages

Langel FD, et al., , J. Biol. Chem., (2008) 283(47):32419-31

Clayton AH. , . J Microsc. (2008) 232(2):306-12

Clayton AH, et al., . Growth Factors (2008) 20:1

Plowman et al., . Molecular and Cellular Biology (2008) 4377–4385

Belanis L, et al., . Molecular Biology of the Cell (2008) 19:1404–1414

Van Manen HJ, Refractive index sensing of green fluorescent proteins in living cells using fluorescence lifetime imaging microscopy. Biophys J. (2008) 94(8):L67-9

Van der Krogt GNM, et al., , PLoS ONE, (2008) 3(4):e1916

Dai X, et al., . Nanomedicine. (2008) 4(1):49-56

Elder A, et al., . J Opt Soc Am A Opt Image Sci Vis. (2008) 25(2):452-62.

Berdiev BK, et al., , J. Biol. Chem., (2007) 282(50):36481-88

Domingo B, et al., , Microsc Res Tech. (2007) 70(12):1010-21

Matthews SM, et al., , Anal Chem. (2007) 79(11):4101-9

Tian T, et al., , Nat Cell Biol. (2007) 9(8):905-14

Clayton AHA, et al., . Biochemistry (2007) 46(15):4589-97

Elder AD, et al, , Journal of Microscopy (2006) 224(Pt2):166-80

Elder AD, et al., , Optics Express (2006) 14:5456-5467

Dai X, et al., , Polymer (2006) 47(8):2689-2698

Clayton AHA, et al, , Journal of Biological Chemistry (2005) 280(34):30392-30399

Van Rheenen J, et al.,, The EMBO Journal (2005) 24(9):1664–1673

Hanley QS and Clayton AHA, , Journal of Microscopy (2005) 218(1):62-7

Zwart W, et al., , Immunity (2005), 22(2):221-233

Ponsioen B, et al., , EMBO reports (2004) 5(12):1176–1180

May M, An easy upgrade to fluorescence lifetime imaging, BioPhotonics International (2004) 20-21

Stoop KWJ, et al., Measuring FRET in living cells with FLIM, 8th Chinese Peptide Symposium, Kunming China, (2004) July 3-6

Van Geest LK and Stoop KWJ, , Letters in Peptide Science (2003) 10(5-6):501-510

|關于我們|聯系方式|客戶留言|服務與支持|相關知識|友情鏈接|
Copyright © 2013-2022 FredorScience. 弗(fu)銳(rui)達科技 版權所有